- ECE 265 -

ANALYTIC TECHNIQUES IN ELECTRONIC AND COMMUNICATION ENGINEERING

LAB #8: Z-TRANSFORM

Definition z-transform

Definition 9.1: z-transform Given the sequence $\{x_n = x[n]\}_{n=0}^{\infty}$, the z-transform is defined as follows: $X(z) = \mathfrak{Z}[\{x_n\}_{n=0}^{\infty}] = \sum_{n=0}^{\infty} x_n z^{-n} = \sum_{n=0}^{\infty} x[n] z^{-n},$ which is a series involving powers of $\frac{1}{z}$.

E.g.

- a) Find the z-transform of discrete unit step function of u(n) analytically.
- b) Find the z-transform of the sequence $x(n)=\exp(an)$ analytically.
- c) Find the z-transform of sequence $x(n)=\cos(an)$ analytically.
- d) By using Matlab compute all the z-transform of sequences given in table 9.1.

a.

>> syms n
>> X=ztrans(1/4^n)

X =

4*z/(4*z-1)

	Sequence	z-transform
1	$\delta[n]$	1,
2	u[n]	$\left(\frac{z}{z-1}\right)$
3	b^n	$\frac{z}{z-b}$
4	$b^{n-1}u[n-1]$	$\frac{z}{z-b}$, $\frac{1}{z-b}$
5	e^{an}	$\frac{z}{z-e^a}$
6	n	$\frac{z}{(z-1)^2}$
7	n^2	$\frac{z(z+1)}{(z-1)^3}$
8	nb^n	$\frac{bz}{(z-b)^2}$
9	ne^{an}	$\frac{ze^a}{(z-e^a)^2}$
10		$\frac{i\left(-1+e^{2ia}\right)z}{2(e^{ia}-z)(-1+e^{ia}z)}$
10	$\sin(an)$	$2(e^{ia}-z)(-1+e^{ia}z)$
11	$b^n \sin(an)$	$\frac{ib(-1+e^{2ia})z}{2(be^{ia}-z)(-b+e^{ia}z)}$
12	$\cos(an)$	$\frac{z(1+e^{2ia}-2e^{ia}z)}{2(e^{ia}-z)(-1+e^{ia}z)}$
13	$b^n \cos(an)$	$\frac{z\left(b+be^{2ia}-2e^{ia}z\right)}{2(be^{ia}-z)(-b+e^{ia}z)}$
Table 9.1 z-transforms of some common seque		

Definition of inverse z-transform

▶ Theorem 9.1 (Inverse z-transform) Let X(z) be the z-transform of the sequence $\{x_n = x[n]\}_{n=0}^{\infty}$ defined in the region R < |z|. Then x_n is given by the formula

$$x_n = x[n] = 3^{-1}[X(z)] = \frac{1}{2\pi i} \int_C X(z) z^{n-1} dz,$$
(9-2)

where C is any positively oriented simple closed curve that lies in the region R < |z| and winds around the origin.

Proof The z-transform is $X(z) = \Im[\{x_n\}_{n=0}^{\infty}] = \sum_{k=0}^{\infty} x_k z^{-k}$. Multiplying through by z^{n-1} , we obtain

$$X(z)z^{n-1} = (\sum_{k=0}^{\infty} x_k z^{-k})z^{n-1}$$

- e) Obtain the inverse z-transform of X(z)=2z/(2z-1) analytically.
- f) On matlab use iztrans
- g) By using residue theorems of inverse z-transform.

$$\begin{split} &x_{n=}Z^{-1}[X(z)] = \sum_{j=1}^{k} Res[X(z)z^{n-1},z_{j}] \\ &x_{n=}Z^{-1}[X(z)] = \sum_{j=1}^{k} lim_{z-zi}(z-z_{i})X(z)z^{n-1} \end{split}$$

Homework: Find xn of given $X(z)=1/(1-\sqrt{2/z+z^{-2}})$ both analytically and on matab.

