ANALYTIC TECHNIQUES IN ELECTRONIC AND COMMUNICATION ENGINEERING

LAB \#10: FOURIER SERIES

Fourier series are infinite series designed to represent general periodic functions in terms of simple cosines and sines.

Assume $f(x)$ is a function of x and periodic with 2π means $f(x+2 \pi)=f(x)$.
It can be represented that
$\mathrm{f}(\mathrm{x})=\mathrm{a}_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right)$
Ex:find Fourier series coefficients of

$$
f(x)=\left\{\begin{array}{rlc}
-k & \text { if } & -\pi<x<0 \\
k & \text { if } & 0<x<\pi
\end{array} \text { and } f(x+2 \pi)=f(x)\right.
$$

and plot it on matlab for $\mathrm{N}=5,6,7,8,9,10$.
Ex: For the given signal bellow directly find Fourier series represantation and plot on matlab.

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{k=+\infty} X[k] e^{j k w_{0} t} \quad X[k]=\frac{1}{T} \int_{T} x(t) e^{-j k w_{0} t} d t \\
& x_{N}(t)=\sum_{k=-N}^{k=+N} X[k] e^{j k w_{0} t} \\
& w_{0}=\frac{2 \pi}{T}
\end{aligned}
$$

$$
\begin{aligned}
& t=-5: 0.01: 5 \\
& x t=z e r o s(1, \text { leng } \\
& N=10 \\
& \text { for } k=-N: N \\
& x k=0.25 *(1-\text { ex } \\
& x t=x t+x k * \text { ex } \\
& \text { end } \\
& x t=0.5+x t \\
& \text { plot }(t, x t)
\end{aligned}
$$

$$
x t=\operatorname{zeros}(1, \operatorname{length}(t))
$$

$$
x k=0.25 *(1-\exp (-j * k * p i)) /(j *(k+0.001) * p i / 2)
$$

$$
x t=x t+x k * \exp (k * j * 0.5 * p i * t)
$$

