Answer the following questions for given below
1.

a) Find its period T and first term of Fourier series ao
b) Find its Fourier series coefficients a_{n} and b_{n} then represent the signal with Fourier series.
c) Find its Fourier series by direct method.

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{k=+\infty} X[k] e^{j k w_{0} t} \quad X[k]=\frac{1}{2} \\
& x_{N}(t)=\sum_{k=-N}^{k=+N} X[k] e^{j k w_{0} t} \quad w_{0}=\frac{2 \pi}{T}
\end{aligned}
$$

d) Show that part b and part c gives the same result don't forget ao for part c .
e) Write 2 matlab codes for part b and c that gives same result.
2. Answer the following questions for the given transfer function bellow

$$
G(s)=\frac{7 s^{2}+63 s+134}{(s+3)(s+4)(s+5)}
$$

a) Form given transfer function $G(s)$ by using $\mathbf{t f}($.$) function and obtain poles and zeros of$ $G(s)$ by using pole(.),zero(.) functions in MATLAB
b) Plot poles and zeros of G(s) (obtained previously in Part a)) in complex s-plane by using real(.),imag(.) functions in MATLAB
c) Evaluate Inverse Laplace Transform of transfer function $\mathrm{G}(\mathrm{s})$, as $\mathrm{g}(\mathrm{t})$, via Partial Fraction Expansion, analytically
d) Evaluate Inverse Laplace Transform of transfer function $\mathrm{G}(\mathrm{s})$, as $\mathrm{g}(\mathrm{t})$, via Residue Theorem, analytically and check your results evaluated previously in Part c)
e) Plot the real valued function $\mathrm{g}(\mathrm{t})$ (evaluated previously in Part $\mathbf{c})$) with respect to t in MATLAB where $0 \leq \mathrm{t} \leq 2 \pi$
3. Answer the following questions for the given transfer function bellow

$$
G(s)=\frac{s^{3}+s^{2}-s+3}{s^{5}-s}
$$

f) Form given transfer function $G(s)$ by using $\mathbf{t f}($.$) function and obtain poles and zeros of$ $G(s)$ by using pole(.),zero(.) functions in MATLAB
g) Plot poles and zeros of G(s) (obtained previously in Part a)) in complex s-plane by using real(.),imag(.) functions in MATLAB
h) Evaluate Inverse Laplace Transform of transfer function $\mathrm{G}(\mathrm{s})$, as $\mathrm{g}(\mathrm{t})$, via Partial Fraction Expansion, analytically
i) Evaluate Inverse Laplace Transform of transfer function $\mathrm{G}(\mathrm{s})$, as $\mathrm{g}(\mathrm{t})$, via Irreducible Quadratic Form, analytically and check your results evaluated previously in Part c)
j) Plot the real valued function $g(t)$ (evaluated previously in Part $\mathbf{c})$) with respect to t in MATLAB where $0 \leq \mathrm{t} \leq 2 \pi$

